Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
The delineation of zoogeographic regions is essential for understanding the evolution of biodiversity. Madagascar, characterized by high levels of endemism and habitat diversity, presents unique challenges and opportunities for such studies. Traditional global zoogeographic classifications, largely based on vertebrates, may overlook finer‐scale patterns of diversity. This study employs comprehensive ant distribution and phylogenomic datasets to propose a refined zoogeographic model for Madagascar. Utilizing phylogenetic Simpson's turnover, we identified three primary regions – Eastern, Northern, and Western – each characterized by distinct environmental and phylogenetic profiles. Further subdivision revealed nine subregions, reflecting variations in elevation, net primary productivity, and terrain ruggedness. Our findings highlight the importance of topographical and environmental barriers in shaping phylogenetic diversity and endemism. Notably, we observed significant phylogenetic clustering in lowland areas and distinct differences in net primary productivity and elevation across regions. This study underscores the value of integrating phylogenetic data in zoogeographic analyses and provides a nuanced framework for investigating biodiversity patterns in Madagascar, offering insights into the processes driving speciation and endemism on the island.more » « lessFree, publicly-accessible full text available August 1, 2026
-
The genus-level classification of the ant subfamily Ponerinae (Hymenoptera: Formicidae) is revised based on a comprehensive phylogenomic analysis of more than 2,300 ultraconserved element (UCE) loci across 1,170 sampled specimens representing 1,020 taxa (600 valid species and 420 morphospecies) and all described ponerine genera known from workers. While most previously defined genus groups are recovered as monophyletic, several genera are shown to be polyphyletic or paraphyletic. To resolve these inconsistencies, four new genera are described:Boltonoponegen. nov.,Makebaponegen. nov.,Subiridoponegen. nov., andSritoponeragen. nov.Xiphopeltastat. rev.is revalidated andEuponerais restricted by expandingFisheroponeto absorb a paraphyletic assemblage.Mesoponerais split into four lineages, resulting in transfers toMakebapone,Subiridopone, andXiphopelta.Iroponerasyn. nov.is synonymized underCryptoponeand additional new synonymies at both the generic and species levels are established. Morphological diagnoses are revised for each affected genus, and updated species lists and new combinations are provided. The updated classification recognizes 54 valid genera within Ponerinae and acknowledges an additional lineage that will be formally described in a subsequent publication. To support identification and comparative studies, revised keys to all extant Ponerinae genera are provided, presented by biogeographic region (African and Malagasy, Palearctic–Indomalaya–Australasia, and New World). This classification is intended to provide a stable, phylogenetically informed framework for future research on ponerine ants.more » « lessFree, publicly-accessible full text available December 19, 2026
-
Abstract Most canopy insect research takes place in tropical forests, where communities are highly vertically stratified. However, temperate forest canopies also provide critical resources to many species and are under intense pressure from global change drivers. The relative lack of knowledge regarding temperate canopy insect ecology impedes our forest management and conservation decisions such that we may be losing temperate canopy biodiversity before we know it exists.We directly compared ant diversity and community composition on the ground and in the tree canopy of North American temperate deciduous forests for the first time. We also evaluated two canopy sampling methods—baits and hand collections.We collected 34 ant species from 102 trees across seven sites. Ant diversity was greater on the ground than in the canopy, and species turnover created distinct communities across vertical strata. Only 12% of species were exclusively arboreal, but 47% were collected in both strata, indicating the canopy is an important resource for temperate ants, even if they are not restricted there.Baiting and hand‐collecting recovered similar species richness, but whether baits captured a subset of hand‐collected species or a unique assemblage was site‐dependent. Nevertheless, we suggest that these methods are most effective in conjunction.Hand collection allowed us to document arboreal nests of 10 species, including the invasive needle ant,Brachyponera chinensis, which was previously thought to be strictly terrestrial.Our results emphasise the importance of including the canopy in temperate forest ecology and conservation assessments.more » « less
-
Abstract The order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification. Instead, transitions to secondary phytophagy (from parasitoidism) had a major influence on diversification rate in Hymenoptera. Support for the stinger and the wasp waist as key innovations remains equivocal, but these traits may have laid the anatomical and behavioral foundations for adaptations more directly associated with diversification.more » « less
-
null (Ed.)Abstract Background Parasitoidism, a specialized life strategy in which a parasite eventually kills its host, is frequently found within the insect order Hymenoptera (wasps, ants and bees). A parasitoid lifestyle is one of two dominant life strategies within the hymenopteran superfamily Cynipoidea, with the other being an unusual plant-feeding behavior known as galling. Less commonly, cynipoid wasps exhibit inquilinism, a strategy where some species have adapted to usurp other species’ galls instead of inducing their own. Using a phylogenomic data set of ultraconserved elements from nearly all lineages of Cynipoidea, we here generate a robust phylogenetic framework and timescale to understand cynipoid systematics and the evolution of these life histories. Results Our reconstructed evolutionary history for Cynipoidea differs considerably from previous hypotheses. Rooting our analyses with non-cynipoid outgroups, the Paraulacini, a group of inquilines, emerged as sister-group to the rest of Cynipoidea, rendering the gall wasp family Cynipidae paraphyletic. The families Ibaliidae and Liopteridae, long considered archaic and early-branching parasitoid lineages, were found nested well within the Cynipoidea as sister-group to the parasitoid Figitidae. Cynipoidea originated in the early Jurassic around 190 Ma. Either inquilinism or parasitoidism is suggested as the ancestral and dominant strategy throughout the early evolution of cynipoids, depending on whether a simple (three states: parasitoidism, inquilinism and galling) or more complex (seven states: parasitoidism, inquilinism and galling split by host use) model is employed. Conclusions Our study has significant impact on understanding cynipoid evolution and highlights the importance of adequate outgroup sampling. We discuss the evolutionary timescale of the superfamily in relation to their insect hosts and host plants, and outline how phytophagous galling behavior may have evolved from entomophagous, parasitoid cynipoids. Our study has established the framework for further physiological and comparative genomic work between gall-making, inquiline and parasitoid lineages, which could also have significant implications for the evolution of diverse life histories in other Hymenoptera.more » « less
An official website of the United States government
